Iwate Biotechnology Research Center

Department of Genomics and Breeding

Our mission is to enhance crop production in Iwate Prefecture of Japan through basic research on genetics and genomics.

IBRC can accept JSPS Postdoctoral Fellows and Ph.D. students of the United Graduate School of Agricultural Sciences, Iwate University.

WHAT'S NEW!

[Publication] RIL-StEp: epistasis analysis of rice recombinant inbred lines reveals candidate interacting genes that control seed hull color and leaf chlorophyll content

[Publication] Insertion of a transposable element in Less Shattering1 (SvLes1) gene is not always involved in foxtail millet (Setaria italica) domestication

[Publication] Genome Analyses Reveal the Hybrid Origin of the Staple Crop White Guinea Yam (Dioscorea rotundata)

[Notice] We released new pipelines of MutMap and QTL-seq. [Go to]

Carousel imageCarousel imageCarousel image

Gene isolation for agronomic traits in crops

Making use of the diversity present in cultivated and wild rice species, as well as utilizing over 12,000 EMS mutant lines we generated in an elite Japonica cultivar, our goals is to isolate and characterize genes and QTLs controlling important traits such as plant architecture, disease resistance, stress tolerance, and yield in rice. Through close collaboration with the Iwate Agricultural Research Center (IARC), we are conducting field trials using mapping populations (F2, RILs, and Nested Association Mapping populations) in a large rice paddy field. Our approach combines the classical map-based cloning techniques with the power of next-generation sequencing to accelerate the isolation of important genes in cereal crops.

Rice - Magnaporthe interactions

Rice blast, caused by an ascomycete fungus Magnaporthe oryzae, is the most severe disease of rice throughout the world. We identified three novel avirulence genes, AVR-Pia, AVR-Pii, AVR-Pik/km/kp from M. oryzae. We also isolated rice resistance gene Pia consisting of two adjacent NBS-LRR protein genes, confers resistance to M. oryzae carrying the AVR-Pia.

We are trying to do a functional analysis of the AVR genes of M.oryzae and rice R genes and elucidate molecular plant-microbe interactions.

Bioinformatics

To facilitate the utilization of our mutant lines and the natural variation in Oryza species for rice improvement, we are developing novel methodologies that use new sequencing technology for the rapid isolation of important genes and QTLs. The published MutMap and QTL-seq methods are examples to this end.

We are also performing de novo genome assemblies of the cereal crop varieties and the non-model plant genome using long-read sequencing technologies.